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Laser evolution and plasma wave excitation by a relativistically intense short-pulse laser in underdense

plasma are investigated in the broad pulse limit, including the effects of pulse steepening, frequency

redshifting, and energy depletion. The nonlinear plasma wave phase velocity is shown to be significantly

lower than the laser group velocity and further decreases as the pulse propagates owing to laser evolution.

This lowers the thresholds for trapping and wave breaking and reduces the energy gain and efficiency of

laser-plasma accelerators that use a uniform plasma profile.
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The propagation velocity of laser pulses and the phase
velocity of plasma waves are of fundamental importance to
many areas of plasma physics. For example, in laser-
plasma accelerators (LPAs) [1], which have demonstrated
the production of high-quality GeV electron beams in
centimeter-scale plasmas [2], the dynamics of the acceler-
ated electrons is strongly affected by the plasma wave
phase velocity. The phase velocity determines the dephas-
ing length (distance for a relativistic particle to move out of
an accelerating phase) and, hence, the maximum energy
gain of the electrons in the plasma wave [3], as well as the
trapping threshold for background plasma electrons [4] and
the maximum amplitude of the plasma wave [5]. The
plasma wave phase velocity driven by a short-pulse laser
is intrinsically related to the drive laser velocity and evo-
lution. A calculation of these velocities is essential for the
design and understanding of present and future LPA
experiments.

In LPAs, the electron plasma wave is driven by the laser
ponderomotive force. For low laser intensities a20 � 1, the
phase velocity of the plasma wave is approximately
the group velocity of the laser. Here a20 ’ 7:32�
10�19�2

0½�m�I0½W=cm2� for a linearly polarized laser

with �0 ¼ 2�=k0 ¼ 2�c=!0 the laser wavelength and I0
the peak intensity. For a low-intensity laser pulse propagat-
ing in a uniform, underdense plasma (!2

p=!
2
0 � 1), the

linear laser group velocity is vg=c ¼ �g ’ 1�!2
p=2!

2
0 in

the one-dimensional (1D) limit, where !p ¼ kpc ¼
2�c=�p ¼ ð4�n0e2=mÞ1=2 is the plasma frequency, with

n0 the unperturbed neutral plasma number density, m the
electron mass, e the electron charge, and c the speed of
light in vacuum. In the linear regime the plasma wave
phase velocity is vp ’ vg with the Lorentz factor

�p ’ �g ¼ ð1� �2
gÞ�1=2 ¼ !0=!p.

Present LPA experiments operate at relativistic inten-
sities I0 > 1018 W=cm2, or a0 * 1, to drive large ampli-
tude plasma waves for particle acceleration. In the
nonlinear regime, calculations of the plasma wave
phase velocity are generally lacking in the literature.

Some approximate expressions have been calculated in
limited regimes. Lu et al. [6] used particle-in-cell simula-

tions to estimate a constant phase velocity �p ¼ !0=
ffiffiffi
3

p
!p

in the blowout regime (a0 � 4) and a phase velocity of
�p ¼ ffiffiffiffiffi

a0
p

!0=!p in the nonlinear 1D regime. Earlier

work, also using particle-in-cell simulations, showed
vp < vg in the nonlinear 1D regime [7]. More typically,

the approximation vp ’ vg is currently used in the litera-

ture, with vg approximated by the linear group velocity. As

shown in this work, this is a poor approximation in the
nonlinear regime a0 * 1. In general, the wave phase ve-
locity is determined by the nonlinear laser intensity trans-
port velocity and laser evolution. In addition, the wave
phase velocity evolves as the laser propagates and deposits
energy into the plasma wave over a depletion length [8].
In this Letter, we investigate the propagation of high-

intensity (a0 � 1) laser pulses in 1D in underdense plasma
and calculate the nonlinear intensity transport and group
velocities of the laser pulse and the nonlinear phase veloc-
ity of the excited plasma wave. These are calculated by
using a reduced wave equation and are shown to be in
agreement with solutions to the full Maxwell equations
coupled to the nonlinear plasma fluid response.
Laser propagation is considered in a cold, collisionless,

underdense plasma (with immobile ions). It is convenient
to introduce the normalized vector potential a ¼ eA=mc2

(in the Coulomb gauge r � a ¼ 0), the normalized space-
charge potential � ¼ e�=mc2, and the proper density
� ¼ ðn=n0Þ��1, where n is the plasma density and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
is the Lorentz factor of the normalized

fluid momentum u ¼ p=mc. Introducing the variables
� ¼ z� ct and 	 ¼ ct, and the laser pulse envelope â as
a? ¼ ðâ=2Þ expðik0�Þê? þ c:c:, the wave equation for the
laser field becomes [1]

½r2
? þ 2ðik0 þ @� Þ@	 � @2	�â ¼ k2p�â: (1)

Assuming kp � k0, associated with Eq. (1) is the adiabatic

invariant (the wave action A) [9], such that
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@	A¼@	
Z
d2x?

Z
kpd�â

�½1�ik�1
0 ð@��@	Þ�â¼0: (2)

By using Eq. (1), the laser energy evolution [10] is

@	E ¼ ðkp=k0Þ2
Z

d2x?
Z

kpd��@� jâj2=2; (3)

where E ¼ R
d2x?

R
kpd�j½1� ik�1

0 ð@� � @	Þ�âj2 is the

normalized laser energy.
For short-pulse (kpL� 1) interactions in underdense

plasma (kp � k0), j@�âj � jâj=L� kpjâj � k0jâj,
jr?âj � jâj=r0, and j@	âj � jâj=Le, where r0 is the spot
size, L is the pulse length, and Le is the characteristic
length for laser evolution. We assume a sufficiently broad
pulse such that the transverse operator may be neglected. In
this regime Le � k20=k

3
p, j@	âj � j@�âj � jk0âj, and the

wave equation (1) can be approximated by coupled equa-
tions for the laser intensity and wave number:

@	̂a
2 ¼ k̂�2½a2�0 þ ð�a2Þ0 � 2a2�k̂�1k̂0�=2; (4)

@	̂k̂ ¼ k̂�2½�k̂0 � k̂�0�=2; (5)

where 	̂ ¼ k3p	=k
2
0, the primes denote k�1

p @� , k̂ ¼ k=k0 ¼
1þ k�1

0 @�
 is the laser wave number normalized to the

initial wave number, and â ¼ a expði
Þ. Equation (4)
describes pulse steepening, and Eq. (5) describes self-
phase modulation and frequency shifts. Assuming the
laser is initially monochromatic without a chirp, then
for early times (	̂ < 1), Eqs. (4) and (5) simplify to

@	̂a
2 ¼ a2�0 þ �aa0 and @	̂k̂ ¼ ��0=2, respectively

(these equations will be used to describe the early-time
evolution in the following).

For L � Le, the quasistatic approximation [1] may
be applied to the plasma fluid equations. Assuming a
broad laser pulse kpr0 � 1, the quasistatic fluid equations

reduce to

x00 ¼ ð�2
?x

�2 � 1Þ=2; (6)

where x ¼ 1þ�, � ¼ 1=x, �x0 ¼ �k�1
p @�� is the

plasma wave electric field normalized to E0 ¼ mc2kp=e,

and �2
? ¼ 1þ a2=2. Behind the laser (�? ¼ 1), the first

integral of Eq. (6) yields x02 þ xþ x�1 ¼ Ê2
m þ 2, where

Êm ¼ Epeak=E0 is the peak field behind the laser.

By using the first integral of Eq. (6), the rate of change
of the integrated normalized intensity Q ¼ R

kpd�a
2 for

early times is

@	̂Q ¼
Z

kpd�@	̂a
2 ¼

Z
d�a2@��=2 ¼ Ê2

m: (7)

This describes the early-time steepening of a resonant laser

pulse. From Eq. (3) in 1D, @	̂E ¼ �Ê2
m ¼ �@	̂Q; i.e., the

rate of energy depletion [8] is equal to the rate of pulse
steepening. The mean laser wave number can be expressed
as hk=k0i ¼ E=A. From action conservation @	̂A ¼ 0,

as the pulse steepens, the mean wave number decreases
(redshifts) and the laser energy depletes:

A@	̂hk=k0i ¼ @	̂E ¼ �@	̂Q ¼ �Ê2
m; (8)

and the rate is determined by the peak of the accelerating

field behind the laser Êm.
At the phase of the peak field �p, x

00ð�pÞ ¼ 0, and the

evolution of the peak electric field is

@	̂Êm ¼ @	̂Eð�pÞ=E0 ¼ �@	̂x
0ð�pÞ ¼ �y0ð�pÞ; (9)

with y ¼ @	̂� ¼ @	̂x. By using Eq. (6), y
00 ¼ ��2

?x
�3yþ

x�2@	̂a
2=4. Substituting the early-time evolution of the

laser intensity yields

y00 ¼ ��2
?yx

�3 � ½a2x�4x0 � x�3aa0�=4: (10)

Equations (6) and (10) can be solved for the rate of change
of the plasma wave amplitude and hence the laser evolution

Eq. (8). In the limit of a20 � 1, Êm=Êmð0Þ ’ 1þ 0:2a20	̂
for a resonant Gaussian pulse kpL ¼ 1 with âð�Þ ¼
a0 expð��2=4L2Þ.
By using Eq. (9), Ê2

m ’ Ê2
mð0Þ½1þ 2	̂y0ð�pÞ=x0ð�pÞ�, and

the evolution of the laser energy is

E =E0 ¼ 1� 	̂=L̂pd � 	̂2y0ð�pÞx0ð�pÞ=E0: (11)

Here L̂pd is the initial normalized depletion length [8]

L̂pd ¼ k3pLpd=k
2
0 ¼ E0=Ê

2
mð0Þ, where E0 is the initial pulse

energy (E0 ¼ a20
ffiffiffiffiffiffiffi
2�

p
kpL for a Gaussian profile).

The laser intensity centroid (i.e., position weighted by
jâj2) may be defined as �� ¼ Q�1

R
kpd�a

2� , and the laser

intensity transport velocity �I is given by @	 �� ¼ ��I ¼
�I � 1. By using the evolution equation for the intensity,
the early-time intensity transport velocity is

@	̂ �� ¼ Q�1
Z

kpd�ð� � ��Þð�0a2 þ �aa0Þ; (12)

with � ¼ 1=x in the quasistatic approximation. In the
long-pulse, adiabatic limit, x ¼ �?, x0 ¼ 0, and Eq. (12)

yields the Lorentz factor �I ¼ ð1� �2
I Þ�1=2 ¼ ðk0=kpÞ�

½�?ð�? þ 1Þ=2�1=2. For jâj2 � 1, �I ’ ð1þ 3jâj2=16Þ�
ðk0=kpÞ in the adiabatic limit, which agrees with the

result in Ref. [11]. Evaluating Eq. (12) for a resonant
sine pulse yields �I ¼ 1þ @	 �� ¼ 1� ðkp=k0Þ2 �
f1� ½ð75� 2�2Þ=192�a20g=2. For a resonant Gaussian

pulse, evaluation of Eq. (12) yields the Lorentz factor
�I ’ ð1þ 0:10a20Þðk0=kpÞ. The Lorentz factor of the laser

intensity transport velocity grows linearly with laser inten-
sity for a20 � 1, with the coefficient determined by the

specific laser profile.
The laser intensity transport velocity Eq. (12) differs

from the nonlinear laser group velocity [7]. The laser group
velocity defined as the velocity of the laser energy centroid
h�i is �g ¼ 1þ @	h�i with



@	̂h�i ¼ E�1
Z

kpd�ð� � h�iÞ�aa0: (13)

For a resonant sine-pulse profile with a20 � 1, evaluating
Eq. (13) yields @	̂h�i ¼ �f1� ½ð15þ 2�2Þ=192�a20g=2.
For a resonant Gaussian pulse, evaluation of Eq. (13) yields
the group velocity Lorentz factor �g ’ ð1þ 0:088a20Þ�
ðk0=kpÞ for a20 � 1.

The plasma wave phase velocity is determined by the
intensity transport velocity and the evolution of the laser.
The nonlinear phase velocity of the plasma wave, defined
as the velocity of the peak of accelerating field, can be
obtained from Eqs. (4)–(6). The peak of the electric
field behind the laser occurs at a phase �p such that

@2��ð�pÞ ¼ 0, i.e., from Eq. (6), at�ð�pÞ ¼ 0. The velocity

of the peak field is determined by the evolution of �pð	Þ,
i.e., �p ¼ 1þ ��p ¼ 1þ ½�pð�	Þ � �pð0Þ�=�	. For the
peak field, �ð�pð�	Þ;�	Þ ¼ �ð�pð0Þ; 0Þ ¼ 0, and the

phase velocity is given by

��p ¼ �@	�ð�pÞ=@��ð�pÞ: (14)

Equations (6) and (10) can be solved for the initial non-
linear phase velocity �p ¼ 1� ½yð�pÞ=x0ð�pÞ�ðkp=k0Þ2
given the laser envelope að�Þ. Because of the evolution
of the shape of the field, the phase velocity is dependent
on the phase in the wave. The phase velocity of the
zero crossing of the field, where x0ð�0Þ ¼ 0, is �pð�0Þ ¼
1� @2�	�ð�0Þ=@2��ð�0Þ ¼ 1� ½y0ð�0Þ=x00ð�0Þ�ðkp=k0Þ2.

Figure 1 shows the Lorentz factor of the initial phase
velocity �p, laser group velocity �g, and intensity transport

velocity �I versus a0 for a resonant (kpL ¼ 1) Gaussian

laser profile âð�Þ ¼ a0 expð��2=4L2Þ. The curves are the
analytic calculations using Eqs. (12)–(14), and the points
are solutions to the full Maxwell-fluid equations (with
k0=kp ¼ 20) using the code INF&RNO [12]. As Fig. 1 illus-

trates, modeling the phase velocity as the linear laser group
velocity ðkp=k0Þ� ¼ 1 (or nonlinear laser velocities �g

or �I) can be a poor approximation. The second (and
subsequent) plasma wave periods have lower phase veloc-
ities owing to the increasing nonlinear plasma wavelength
as the intensity grows (i.e., pulse steepening).
For a2 � 1, Eq. (6) may be expanded to orderOða6Þ and

solved perturbatively to yield the initial phase velocity. For
an initially resonant Gaussian pulse, the phase velocity of
the peak field in the first wave period following the laser is
�p ’ ðk0=kpÞ½1þ 0:10a20 � 0:12a40 þ 0:05a60�. To order

Oða2Þ, the phase velocity is approximately the intensity
transport velocity �p ’ �I. Higher-order nonlinearities are

due to the evolution of the plasma wave driven by an
evolving laser, i.e., changes in the nonlinear plasma wave-
length and the phase location of peak field.
For a20 > 1, the phase velocity is initially dominated by

the nonlinear increase in the plasma wavelength and wave
amplitude owing to the laser steepening. For �2

p � 1, the

nonlinear plasma wavelength is [1] �Np ¼ 2�=kNp ¼
ð2=�Þ�px

1=2
m E2ð1� 1=x2mÞ, where E2 is the complete

elliptic integral of the 2nd kind, and xm ¼ 1þ Ê2
m=2þ

½ð1þ Ê2
m=2Þ2 � 1�1=2 is the maximum potential. Assuming

the plasma wave phase is a function of kNp� , the

contribution to the phase velocity owing to the evolution
of �Np is

��p ’ �p�
�1
Npð@�Np=@ÊmÞ@	Êm; (15)

which can be evaluated by using Eq. (9). The dashed
curves in Fig. 1 show the phase velocity given by
Eq. (15) for plasma wave periods Np ¼ 1 and 2. In the

ultrarelativistic limit a0 � 1, the nonlinear phase velocity
driven by a Gaussian laser (with kpL ¼ 1) asymptotes to

�p 	 0:45N�1=2
p ðk0=kpÞ.

As the laser evolves, so do the plasma wave and its phase
velocity. Figure 2 shows the evolution of the phase velocity
(solid curves in Fig. 2 are solutions to the full Maxwell-
fluid equations). The decrease in phase velocity in time is
due to the laser frequency redshifting and the pulse steep-
ening (growing plasma wavelength). The rate of decrease
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FIG. 1. Lorentz factor of the phase velocity ðkp=k0Þ�p of the
peak field (first Np ¼ 1 and second Np ¼ 2 plasma wave peri-

ods), intensity transport velocity ðkp=k0Þ�I, and group velocity

ðkp=k0Þ�g for a resonant Gaussian laser vs a0. Curves are

analytic theory, and points are solutions to full Maxwell-fluid
equations (with k0=kp ¼ 20). Dashed curves are the phase

velocity due to the plasma wavelength evolution Eq. (15).

0.8

0.7
3.750.0

a
0
=0.5

k
p
3τ /k

0
k 2

FIG. 2. Lorentz factor of the phase velocity ðkp=k0Þ�p of the
peak field in the first plasma wave bucket vs 	k3p=k

2
0 for initial

intensities a0 ¼ 0:5, 0.8, 1.0, 1.2, and 1.5 and for an initially
resonant Gaussian laser with k0=kp ¼ 20. Dashed lines show the

initial rate of change of the phase velocity Eq. (16).



of the phase velocity is approximately linear, and the initial
rate can be calculated by using

@	��pð�pÞ ¼
�@2	�½�pð0Þ�
@��½�pð0Þ� þ 2@	�½�pð0Þ�@2�	�½�pð0Þ�

f@��½�pð0Þ�g2
(16)

for the peak of the field, or @	��pð�pÞ ¼ ½�w=x0 þ
2yy0=ðx0Þ2�ðkp=k0Þ4, where w ¼ @2	̂�. By using Eq. (10),

w00¼��2
?ðwx�3�3y2x�4Þ�yx�3@	̂a

2þx�2@2	̂a
2=4; (17)

where @2	̂a
2 is given by Eqs. (4) and (5) with the initial

conditions, e.g., k̂ð0Þ ¼ 1, k̂0ð0Þ ¼ 0, @	̂k̂ð0Þ ¼ x0=2x2, and
@	̂a

2ð0Þ ¼ �x0a2=x2 þ aa0=x. The rate of change of the
phase velocity is given by the coupled equations (6), (10),
and (17). Figure 2 shows a comparison of the rate of
change of the phase velocity Eq. (16) (dashed curves)
and the solutions to the full Maxwell-fluid equations (solid
curves). For an initially resonant Gaussian pulse with
a20 < 1, the initial rate of change of the Lorentz factor of

the phase velocity (of the peak field in the second plasma
wave bucket) is ðkp=k0Þ@	̂�p ’ �0:09a20 þ 0:03a40.

The dephasing length Ld can be defined as the propaga-
tion distance required for a particle moving at ’ c to travel
from the peak of the field, at phase �p such that xð�pÞ ¼ 1,

to the zero crossing of the field, at phase �0 such that
x0ð�0Þ ¼ 0. This distance will be determined by the
phase velocity of the zero crossing �pð�0Þ. The normalized

dephasing length L̂d ¼ k3pLd=k
2
0 is given by �pð0Þ¼

�0ðL̂dÞ¼�0ð0Þþð�y0=x00ÞL̂dþð2y0y00=x002�w0=x00ÞL̂2
d=2.

Figure 3 shows the nonlinear dephasing length L̂d for
Np ¼ 2 versus a0 assuming a resonant Gaussian laser.

Also shown is the energy remaining in the laser at the
dephasing length EðLdÞ=E0 given by Eq. (11). The points in
Fig. 3 are solutions to the full Maxwell-fluid equations. As
the intensity increases, Ld is reduced owing to the decreas-
ing phase velocity, and the laser does not efficiently deplete
its energy over this reduced interaction length. This indi-
cates the necessity of tapering [13,14] (i.e., an increasing
plasma density such that the plasma wavelength shortens,
compensating for the particle slippage) for efficient laser-
plasma accelerators.

In this Letter, we have investigated the evolution of an
intense (a0 � 1) short-pulse (kpL� 1) laser in an under-

dense (kp=k0 � 1) plasma and of the excited plasma wave.

Expressions governing the laser evolution (depletion, pulse
steepening, redshifting, and laser velocities) and plasma
wave evolution (wave amplitude and phase velocity) were
derived by using a reduced wave equation coupled to the
quasistatic plasma response and were found to be in good
agreement with the full Maxwell-fluid equations. This
work assumed a 1D, broad pulse limit, which will be valid
for a laser spot size r0 such that k2pr

2
0 > 1 and a2=�? <

k2pr
2
0. In the nonlinear regime a0 * 1, the nonlinear plasma

wave phase velocity is substantially lower than the laser
group velocity. The phase velocity is lower in subsequent
plasma wave periods owing to the evolution (lengthening)
of the nonlinear plasma wavelength. As the laser propa-
gates, pulse evolution (redshifting and steepening) further
decreases the phase velocity. This indicates that electron
trapping and wave breaking of plasma waves will occur at
lower thresholds than estimations based on the linear group
velocity. Furthermore, this indicates that electron dephas-
ing (rather than laser depletion) will limit the energy gain
in an LPA that uses an axially uniform plasma. This
implies that plasma tapering is necessary to enhance the
single-stage energy gain and efficiency of LPAs.
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