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The wakefield generated in a plasma by incoherently combining a large number of low energy

laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of

fully self-consistent particle-in-cell simulations. The structure of the wakefield has been

characterized and its amplitude compared with the amplitude of the wake generated by a single

(coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the

volume occupied by the laser pulses, behind this region, the structure of the wakefield can be

regular with an amplitude comparable or equal to that obtained from a single pulse with the same

energy. Wake generation requires that the incoherent structures in the laser energy density

produced by the combined pulses exist on a time scale short compared to the plasma period.

Incoherent combination of multiple laser pulses may enable a technologically simpler path to

high-repetition rate, high-average power laser-plasma accelerators, and associated applications.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878620]

I. INTRODUCTION

Plasma-based accelerators have received significant the-

oretical and experimental interest in the last years because of

their ability to sustain extremely large acceleration gradients,

enabling compact accelerating structures.1,2 In a laser plasma

accelerator (LPA), a short and intense laser pulse propagat-

ing in an underdense plasma, ponderomotively drives an

electron plasma wave (or wakefield). The plasma wave has a

relativistic phase velocity (of the order of the group velocity

of the laser driver) and can support large accelerating and

focusing fields. The relativistic plasma wave is the result of

the gradient in laser field energy density providing a force

(i.e., the ponderomotive force) that creates a space charge

separation between the plasma electrons and the neutralizing

ions. For a resonant laser pulse driver, i.e., with a length

L0 � k�1
p , where kp¼xp/c, c being the speed of light in vac-

uum and xp ¼ ð4pn0e2=mÞ1=2
the electron plasma frequency

for a plasma with density n0 (m and e are, respectively, the

electron mass and charge), with a relativistic intensity, i.e.,

with a normalized vector potential a0¼ eA0/mc2� 1 (A0 is

the peak amplitude of the laser vector potential), the ampli-

tude of the accelerating field is of the order E0¼mcxp/e, or

E0½V=m� ’ 96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0½cm�3�

p
. For instance, in a plasma with

n0� 1017 e/cm3, accelerating gradients on the order of

�30 GV/m can be obtained. This value is several orders of

magnitude higher than in conventional accelerators, pres-

ently limited to gradients on the order of �100 MV/m. LPAs

have produced �1 GeV electron beams over a few centi-

meters plasmas with percent-level energy spread,3,4 and

significant effort has been put to increase their reliability and

tunability,5–9 and to fully characterize the properties of the

laser-plasma accelerated beams.10–13

The rapid development and properties of LPAs makes

them interesting candidates for applications to future compact

radiation sources14–18 and high energy linear colliders.19–21

However, significant laser technology advances are required

to realize, for instance, a linear collider based on LPA techni-

ques. A concept for a 1 TeV center-of-mass electron-positron

LPA-based linear collider is presented in Ref. 20. A possible

scenario foresees, for both the electron and positron arms,

multiple LPA stages with a length of Lstage� 1 m, operating

at a density of the order n0� 1017 e/cm3. Each LPA stage

is powered by a resonant laser pulse with duration

T0 � L0=c � 100 fs, wavelength k0� 1 lm, containing tens

of Joules of laser energy (with a peak power of �1 PW), and

with a laser spot size w0� kp¼ 2p/kp, yielding an intensity

such that a0� 1, and creating a quasi-linear wake in the

plasma with accelerating gradient �E0. After propagating in

a plasma stage, the laser pulse driver is depleted. The acceler-

ated particle bunches are then extracted from the plasma

stage and re-injected in a subsequent LPA stage, powered by

a new laser pulse, for further acceleration. The required laser

intensities and energies are achievable with present laser

technology. However, luminosity requirements dictate that

the laser repetition rate is frep� 10 kHz (average laser power

of hundreds of kW), which is orders of magnitude beyond

present technology. The required repetition rate depends on

the plasma density choice and scales as frep / n0.20 However,

operating at a lower plasma density21 reduces the accelerating

gradient and increases beamstrahlung effects.22

To date, LPAs are typically driven by solid-state (e.g.,

Ti:sapphire) lasers that are limited to an average power of

�100 W. For example, the Berkeley Lab Laser Accelerator

(BELLA) laser delivers 40 J pulses on target at 1 Hz.23 Since

virtually all applications of LPAs will benefit greatly from

higher repetition rates, it is essential that high average power

laser technology continues to be developed. Together with

the increase in average laser power, the laser wall-plug
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efficiency will need to increase. Increasing the laser average

power and efficiency would also benefit several future accel-

erator applications beyond LPAs, owing to the broad use of

laser technology in modern high performance accelerator

facilities (e.g., driving electron/ion sources, pump and probe

beams, exciting matter into exotic non-equilibrium states,

dielectric laser accelerators, lasers for Compton scattering

sources, etc.)24,25

Several laser technologies are being studied and consid-

ered as potential candidates to provide systems with high av-

erage power and high wall-plug efficiency, namely, fiber

lasers, diode-pumped solid-state lasers, and optical paramet-

ric chirped pulse amplification (OPCPA) based lasers.2,24–26

For example, in Refs. 26 and 27, a scheme is presented were

a large number of diode-pumped fiber systems, delivering

pulses with �mJ energy at kHz repetition rate, are combined

in such a way that the relative phases of the output beams are

controlled so they constructively interfere (coherent combi-

nation) and produce a single, high power output beam with

high efficiency. The challenges in controlling individual

phases are related not only to the large number of fibers to

combine in order to achieve high peak power (e.g., �104

fibers for a� 30 J energy pulse) but also to the fact that

coherent combination of pulsed beams with a duration of a

few tens or hundreds of femtoseconds requires matching of

both phase and group delays using phase modulators and

delay lines. So far, the coherent combination of an array of

64 (continuous wave) beams from fiber amplifiers with k0/60

precision has been demonstrated.28 The coherent combina-

tion of a small number of femtoseconds lasers has also been

achieved.29,30

In this paper, we show that an LPA does not require a

fully coherent laser pulse driver. This is true because the

LPA wakefield is excited by the ponderomotive force (i.e.,

the gradient in the electromagnetic energy density), along

with the fact that the plasma responds on the time scale

kp/c. Large amplitude wakefield excitation requires suffi-

cient electromagnetic energy within a given volume, typi-

cally of the order of �k3
p. Since the wakefield response

behind the driver depends on the time-integrated behavior

of the electromagnetic energy density of the driver over

kp/c, it is insensitive to time structure in the driver on time

scales � kp/c, which allows for the use of incoherently

combined laser pulses as the driver. Theoretically, this can

be easily demonstrated in the linear (a2< 1) wakefield re-

gime where the amplitude of the electric field of the wake

satisfies jEj=E0 < 1. In the linear regime, the wake electric

field E is given by1

ð@2=@t2 þ x2
pÞE=E0 ¼ �ðcxp=2Þra2; (1)

with the solution

E=E0 ¼ �ðc=2Þ
ðt

0

dt0 sin½xpðt� t0Þ�ra2ðt0Þ: (2)

This Green function solution averages out the small scale

time structure in the ponderomotive force. Hence, in effect,

the wakefield is given by

ð@2=@t2 þ x2
pÞE=E0 ’ �ðcxp=2Þrha2i; (3)

where the angular brackets represent a time average over

scales small compared to kp/c.

Owing to the time average process characterizing the

wake excitation, we show that multiple, low-energy, incoher-

ently combined laser pulses can deposit sufficient field

energy in the plasma to ponderomotively drive a large wake-

field. We show that no phase control in the combination of

multiple laser pulses is required for LPAs. We find that,

under certain conditions, the wake generated by an incoher-

ent combination of pulses is regular behind the driver and its

amplitude is comparable, or equal, to the one obtained by

using a single coherent pulse with the same energy. We

expect that the fundamental requirements to achieve incoher-

ent combination are more relaxed compared to coherent

combination. Hence, incoherent combination may provide

an alternative and technically simpler path to the realization

of high repetition rate and high average power LPAs.

In this paper, we analyze, analytically and numerically

by means of fully self-consistent particle-in-cell (PIC) simu-

lations, the wakefield generated in a plasma by combining a

large number of low energy laser pulses without constraining

the phases of the different laser pulses (incoherent combin-

ing). To illustrate the physics of wake generation using

multiple, incoherent pulses, we consider, as examples, three

different incoherent combination schemes: (1) spectral com-

bining (where different laser pulses, spectrally separated, are

spatially overlapped by using a dispersive optical system),

(2) short pulse stacking (where short pulses with a moder-

ately low energy but high intensity are stacked longitudi-

nally), and (3) a mosaic of beamlets (where short and narrow

laser pulses are placed side-by-side tiling a prescribed vol-

ume). We show that, in spite of the (in general) incoherent

nature of the wakefield within the volume occupied by the

laser pulses, behind this region, the structure of the wakefield

is, in some cases, completely regular, and its amplitude is

comparable or equal to the one obtained by using a single

(coherent) pulse with same energy. We also characterize the

evolution of the wakefield as the incoherent combination of

pulses propagates in the plasma. The results are of interest

for high-repetition rate LPA applications, such as an LPA-

based collider.

The paper is organized as follows. Wakefield excitation

using the spectral combining scheme is presented in Sec. II,

the pulse stacking method in Sec. III, and the mosaic of

beamlets in Sec. IV. Conclusions are presented in Sec. V.

II. SPECTRAL COMBINATION OF INCOHERENT
PULSES

Although technically difficult to realize, we consider the

idealized case of spectrally combining a large number of

incoherent pulses to demonstrate the principle that wakefield

excitation does not require the energy density of the driver to

be in a single coherent pulse. We consider a collection of N
laser pulses propagating along the longitudinal direction, z,

in a parabolic plasma channel. The plasma density profile is

given by



nðrÞ ¼ n0 þ
1

prer2
0

r

r0

� �2

; (4)

where n0 is the on-axis (r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 0) plasma density,

r0 determines the channel depth, and re ¼ e2=mc2

’ 2:82� 10�13 cm is the classical electron radius. For

convenience throughout the paper, we will use comoving

coordinates, namely f¼ z – ct, s¼ ct. Each (linearly

polarized) laser pulse is described initially (s¼ 0) by a

transverse normalized laser vector potential of the form

a?;jðr; fÞ ¼ a0;j exp � r2

w2
0

 !
exp � f2

L2
0

 !
cosðk0;jfþ ujÞ; (5)

for j ¼ 1; :::;N, where a0,j is the amplitude of the laser vector

potential for the jth laser pulse, k0,j¼ 2p/k0,j is the wavenum-

ber associated with the laser wavelength k0,j, uj is an arbi-

trary (random) phase, w0 and L0 are, respectively, the laser

spot size and pulse length (for simplicity, we assume all the

lasers have the same spot size and pulse length, we also

assume that k0,jw0� 1 and k0,jL0� 1, for j ¼ 1; :::;N).

Denoting by I0,j the laser peak intensity, then

a0;j ’ 8:5 � 10�10ðI0;j½W=cm2�Þ1=2k0;j½lm�. We consider pulse

lengths such that L0 � k�1
p (resonant laser pulses), where kp

is the plasma wave number corresponding to the on-axis den-

sity n0. If we take w0¼ r0, every laser pulse is (linearly)

matched in the channel; and so in the limit of low-power and

low-intensity, its spot size does not evolve during propaga-

tion. Under these conditions, we expect each pulse to propa-

gate in the channel with a constant group velocity vg,j

(neglecting nonlinear effects such as self-steepening and

depletion32) given by33

bg;j ¼
vg;j

c
’ 1�

k2
p

2k2
0;j

� 2

k2
0;jr

2
0

: (6)

To leading order, the transverse laser field, which is the domi-

nant component for a broad pulse, is E?;j ’ ðmc2=eÞ@fa?;j.
We define the (denormalized) laser pulse energy as

Uj ¼
Ð

df
Ð

2prdr @fa?;j
� �2 ’ ðp=2Þ3=2a2

0;jk
2
0;jw

2
0L0=2. We also

assume that the N laser pulses are spectrally separated,

namely, the power spectra of the pulses do not overlap

with each other. The spectral bandwidth of each pulse

(Gaussian longitudinal profile) can be estimated as

Dk� 1/L0, so the condition of spectral separation can be

expressed as

jk0;j � k0;lj � Dk � 1=L0; (7)

for j 6¼ l, and the following condition also holds,

ðþ1
�1

df FðfÞ a?;jðr; fÞa?;lðr; fÞ ¼ 0; (8)

for j 6¼ l, where F(f) is any slowly varying function, namely

j@fFj� jFj=L0. The total energy of the combination is then

simply

Utot ¼
XN

j¼1

Uj ¼
1

2

p
2

w2
0L0

j¼1

a2
0;jk

2
0;j: (9)

From an experimental point of view, the condition of

spectral separation allows the overlap of N different beams

by using a dispersive optical system like a sequence of

dichroic mirrors, a grating, or a prism.31 To compute the

wakefield generated by the combination of laser pulses

requires solving Maxwell’s equations coupled with the cold

plasma fluid equations. Assuming that individual plasma par-

ticles are passed over by the laser pulses and the associated

wake in a short time compared with the time over which the

shape of the laser pulses or the wake evolve, we can make

the quasi-static approximation, i.e., @s ’ 0 in all the wake

quantities. Denoting by /tot the wake potential (normalized

to mc2/e), we have1

1

k2
p

@2/tot

@f2
¼ �/tot þ

a2
tot

2
; (10)

where atot ¼
P

j a?;j. Equation (10) is valid in the limit of a

broad plasma channel, k2
pr2

0 � 1, and low intensity, atot � 1

(linear wakefield). The longitudinal accelerating field is then

Ez=E0 ¼ �@/tot=@ðkpfÞ. The Green function solution to

Eq. (10) is

/totðr; fÞ ¼ �sinðkpfÞ
ð1

f
dðkpf

0Þcosðkpf
0Þ a

2
totðr; f0Þ

2

þ cosðkpfÞ
ð1

f
dðkpf

0Þsinðkpf
0Þ a

2
totðr; f0Þ

2
; (11)

where

a2
tot ¼

XN

j¼1

a2
?;j þ

XN

j¼1

XN

l¼1;l6¼j

a?;ja?;l: (12)

The solution for wake phases f in the domain following

the pulses where all the laser fields vanish is obtained by tak-

ing the limit f! �1 in the integrals of Eq. (11). By insert-

ing Eq. (12) in Eq. (11) and using the spectral separation

condition Eq. (8) (in our case kpL0� 1, then the functions

cosðkpf
0Þ and sinðkpf

0Þ within the integrals are slowly vary-

ing functions), we find that the contributions to the integrals

coming from the double summation (i.e., the terms with

j 6¼ l) are vanishing. The wakefield potential behind the laser

pulses then reads

/tot ’ �
1

4

ffiffiffi
p
2

r
ðkpL0Þe�ðkpL0Þ2=8e�2r2=w2

0 sin kpf
XN

j¼1

a2
0;j; (13)

where we used the assumption k0,jL0� 1 to perform an aver-

age over the fast laser oscillations on each of the terms a2
?;j

originating from the first sum in Eq. (12). The average

removes the dependence of /tot on the laser phases uj. We

notice that for wake phases within the volume occupied by

the lasers, where we cannot take the limit f ! �1 in the

integrals of Eq. (11), the contribution to the wakefield



originating from the interference between the lasers [double

summation term in Eq. (12)] does not vanish, yielding an

“incoherent” behavior for /tot characterized by the

non-smoothness of the wakefield due to the presence of spa-

tial structures at several different spatial scales and by the

fact that these structures depend on the particular values of

the relative laser phases uj � ul.

We consider now the wakefield generated by a single

(“coherent”) bi-Gaussian, linearly polarized laser pulse

[same form for the vector potential as in Eq. (5)] and with

the same pulse length, L0, and spot size, w0, as before. We

denote by A0 the amplitude of the normalized vector poten-

tial, and by k0¼ 2p/K0 the laser wavelength. Also in this

case, we assume K0L0� 1 and K0w0� 1. The (denormal-

ized) pulse energy is Uc ¼ ðp=2Þ3=2A2
0K2

0w2
0L0=2 and the

expression of the wake potential in the region behind the

laser driver is

/c ’ �
A2

0

4

ffiffiffi
p
2

r
ðkpL0Þe�ðkpL0Þ2=8e�2r2=w2

0 sin kpf: (14)

Equating the laser energy and the wakefield amplitude for

the single pulse to the corresponding quantities in the case of

N pulses incoherently combined, namely Eqs. (9) and (13),

we obtain the following consistency conditions:

XN

j¼1
a2

0;jk
2
0;j ¼ A2

0K2
0 ; ðequal energyÞ

XN

j¼1
a2

0;j ¼ A2
0; ðequal wakefieldÞ:

8>><
>>: (15)

Therefore, given a set of spectrally separated, low power

laser pulses with identical pulse lengths and spot sizes, and

with wavenumbers and amplitudes of the normalized vector

potential satisfying Eq. (15), the wakefield generated in a

plasma channel by their (incoherent) combination equals, in

the region behind the pulses, the one generated by a single

laser pulse with the same total energy, pulse length, and spot

size.

We notice, however, that this equivalence applies only

in the early stages of the laser plasma interaction. In fact,

during propagation, owing to the fact that lasers with differ-

ent frequencies are characterized by different group veloc-

ities as expressed in Eq. (6), the combination of pulses

disperses and, consequently, the amplitude of the excited

wake drops. We can estimate the lengthening of the laser

driver due to dispersion as follows. We denote by kmin, �k ,

and kmax, respectively, the minimum, central, and maximum

laser wavenumbers in the combination, we also define

dk¼ kmax – kmin; then, using Eq. (6), the rate at which the

lasers disperse is

dL � ½bgðkmaxÞ � bgðkminÞ�s �
kp

�k

� �2

þ 4

ð�kr0Þ2

" #
dk
�k

s: (16)

The driver loses resonance with the plasma when

(kpdL)2� 1, causing a reduction of the wakefield amplitude.

For the case where the driver loses resonance and the laser

pulses are not fully depleted, some (or all) of their remaining

energy may be recovered when the lasers exit the plasma

channel.

The consistency conditions Eq. (15) can be fulfilled in

several ways. In the following, we present two examples. In

the first one, we consider a set of laser pulses with the same

normalized laser vector potential and different energies. In

the second one, we consider a set of pulses with the same

energy and different values for the normalized vector poten-

tial. In both cases, we assume that the laser wavenumbers are

given by

k0;j=K0 ¼ aþ bj; (17)

for j ¼ 1; :::;N, where b, which sets the spectral separation

between lasers pulses, is fixed in such a way the condition

expressed in Eq. (7) is satisfied, namely jk0;jþ1 � k0;jj
¼ K0b� 1=L0 � kp, implying b� kp/K0, and a depends on

the number of laser pulses and on the particular laser combi-

nation scheme as explained below.

For the case of pulses with the same normalized laser

vector potential, we have a0;j ¼ A0=
ffiffiffiffi
N
p

, and the second con-

dition in Eq. (15) is automatically satisfied, while the first

one, together with Eq. (17), gives

a2 þ abðN þ 1Þ þ b2

6
ð2N2 þ 3N þ 1Þ � 1 ¼ 0: (18)

Solving for a in Eq. (18), we finally determine the values of

k0,j to be used in the laser combination. We notice, however,

that a solution does not exist for an arbitrarily large number

of lasers. For this particular scheme, we have

N�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 48=b2

q
� 3Þ=4 (with b <

ffiffiffi
6
p

), or, in the limit b

� 1, N�
ffiffiffi
3
p

=b. For instance, in a 10 GeV LPA stage pow-

ered by a BELLA-type laser (Uc� 30 J, k0� 1 lm, A0� 1),

we have kp=K0 � 0:01. Choosing b� 0.08, we obtain that

the maximum number of lasers that can be accommodated

with this scheme is N� 20, and so a0� 0.22. The minimum

and maximum laser wavelengths are, respectively, 0.6 lm

and 8.9 lm, and the corresponding laser energies are 4 J and

20 mJ. This scheme is characterized by a strong imbalance

among the energies of the different beams.

As a second example, we consider pulses of equal

energy. We have a0;jk0;j ¼ A0K0=
ffiffiffiffi
N
p

; and in this case, the

first condition in Eq. (15) is automatically satisfied. We also

have a0;j ¼ ðA0=
ffiffiffiffi
N
p
ÞK0=k0;j ¼ ðA0=

ffiffiffiffi
N
p
Þðaþ bjÞ�1

; and

using the second condition in Eq. (15), we obtain the equa-

tion for a for this configuration of lasers, namely

XN

j¼1

1

ðaþ bjÞ2
¼ N: (19)

The maximum number of lasers that can be accommodated

in this case is, in the limit b� 1, N�1:6=b2, so this configu-

ration shows a more favorable scaling with b compared to

the equal amplitude combination scheme. In fact, if we take,

as before, kp/K0� 0.01 (e.g., 10 GeV LPA stage) and

b� 0.08, we obtain that the maximum number of lasers is

N� 250. The energy of each pulse is then �120 mJ, the



minimum and maximum laser wavelengths to be used in the

combination are, respectively, 12 lm (with a0 ¼ 0.78) and

0.05 lm (with a0¼ 0.0031). We recall that, however, the

larger is the number of beams, and so the larger is the range

of laser wavelengths employed, the fastest the pulse combi-

nation will disperse. More specifically, according to Eq.

(16), since dk¼ kmax – kmin / N, we have that the propaga-

tion length over which the combination disperses is / 1/N.

Finally, we note that, in both examples, we can accommo-

date twice the number of laser pulses (and so decrease the

laser energy of each pulse) without increasing the range of

laser wavelengths, by considering polarization multiplexing.

A numerical example of wakefield generated by a spec-

tral combination of incoherent pulses is presented in Fig. 1.

In Fig. 1(a), we show (red line) the normalized laser field,

a(f), generated by incoherently combining 50 spectrally

separated laser pulses with equal energies. The black dashed

line is the laser envelope for a single (coherent) laser pulse

with A0¼ 1.5, K0/kp¼ 150, and kpL0¼ 2. The incoherent

laser parameters, namely k0,j, a0,j, are chosen such that the

conditions expressed by Eq. (15) hold. The laser phases are

random. In Fig. 1(b), we show the lineout of the longitudinal

accelerating field, Ez(f)/E0, generated by the coherent pulse

(black line) and by the incoherent combination of laser

pulses for two different set of values of the laser phases (red

and blue dashed lines). We notice that the wakefield from

incoherent combination is regular behind the driver region,

namely kpf�� 4, its amplitude equals the one from the sin-

gle coherent pulse with the same energy, and no dependence

on the laser phases is observed. This is in contrast to the

region within the driver (jkpfj�4), where the wakefield

shows, as expected, an “incoherent” pattern with dependence

on laser phases.

So far, we considered the centroids of the spectrally sep-

arated laser pulses to be completely overlapped. However, if

this is not the case, both the structure (shape) and the ampli-

tude of the wakefield are different compared to the case

where the centroids are superimposed. Denoting by (x0, y0,

z0) the coordinates of the centroid for a generic laser pulse,

we assume that the centroids are randomly distributed with a

Gaussian probability distribution function such that, initially,

hx0i ¼ hy0i ¼ hz0i ¼ 0; hx2
0i ¼ hy2

0i ¼ r2
?, and hz2

0i ¼ r2
z . In

general, the centroid distribution will evolve during propaga-

tion; however, at least for short pulses in the low-power and

low-intensity limit, it will maintain a Gaussian feature. This

is due to the fact that the centroid of each laser which is,

initially, off-axis or with a non-vanishing injection angle,

performs harmonic oscillations about the channel axis with a

period Zos¼ 2pZm, where Zm ¼ k0r2
0=2. In particular, if the

distribution of the injection angles (i.e., hx and hy) is chosen

also to be Gaussian with, initially, hhxi ¼ hhyi ¼ 0; hh2
xi

¼ hh2
yi ¼ r2

?=hZ2
mi, and all the other second order moments

are vanishing, then the transverse centroid distribution is

“matched” in the channel and all the second order moments

of the distribution are constant during propagation, for

propagation lengths short compared to the characteristic dis-

persion length. Summing over the incoherent laser pulses dis-

tribution, the wakefield behind the pulses for non-overlapping

laser centroids is

/tot ’ �
A0
02

4

ffiffiffi
p
2

r
ðkpLÞe�ðkpLÞ2=8e�2r2=w2

sin kpf; (20)

where L2 ¼ L2
0 þ 4r2

z ; w2 ¼ w2
0 þ 4r2

?, and

A0
02 ¼ L0

L

w0

w

� �2XN

j¼1

a2
0;j ¼

L0

L

w0

w

� �2

A2
0: (21)

We note that the wakefield structure is determined by the

properties of the incoherent energy distribution. For instance,

the transverse characteristic size of the wakefield increases

from �w0 to �w in accordance with the increase in the trans-

verse extent of the incoherent energy distribution due to

transverse centroid displacement. Similarly, the effective

driver length determining the wake excitation is the charac-

teristic length of the incoherent energy distribution, L [i.e.,

FIG. 1. (a) Normalized laser field generated by incoherently combining 50

spectrally separated laser pulses with equal energies (red line). The black

dashed line is the laser envelope for a single (coherent) laser pulse with

A0¼ 1.5, K0/kp¼ 150, and kpL0¼ 2. The incoherent laser parameters, k0,j,

a0,j, are chosen such that the conditions expressed by Eq. (15) hold. The

laser phases are random. (b) Lineout of the longitudinal accelerating field

generated by the coherent pulse (black line) and by the incoherent combina-

tion of laser pulses for two different set of values of the laser phases (red

and blue dashed lines).



wake excitation proportional to ðkpLÞe�ðkpLÞ2=8]. Finally, we

have that the effective driver field strength for wake excita-

tion is reduced compared to the case where the centroids are

overlapped, namely A0
02=A2

0 ¼ ðL0=LÞðw0=wÞ2 	 1, and this

is consistent with the fact that, by displacing the laser cent-

roids, the total incoherent energy is distributed over a vol-

ume that is (L/L0) (w/w0)2 times larger compared to the case

where the centroids are overlapped.

In Fig. 2(a), we show maps, obtained in 2D simulations

with the PIC code ALaDyn,34,35 of the longitudinal wake-

field, Ez(f, x), generated by an incoherent combination of 48

spectrally separated pulses (including polarization multiplex-

ing) with identical energies and with r?¼ 0 (overlapped

centroids, left panel), and r?¼ 5 lm (displaced centroids,

right panel). In both cases, rz¼ 0 (no longitudinal centroids

displacement). The laser and plasma parameters are

n0¼ 1018 cm�3, r0¼w0¼ 12 lm, and L0¼ 8 lm. The

remaining incoherent laser parameters, namely k0,j, a0,j, are

chosen such that the conditions expressed by Eq. (15) are

satisfied with A0¼ 1 and k0¼ 0.8 lm. The green dashed lines

delimit the transverse wakefield extent for the case with

r?¼ 0 (left panel). As anticipated, the characteristic trans-

verse size of the wakefield is increased when the laser cent-

roids are displaced.

In Fig. 2(b), we show the on-axis lineout of the longitudi-

nal accelerating field, Ez(f, x¼ 0)/E0, generated by a coherent

pulse with A0¼ 1 (black solid line), and by the incoherent

combination of 48 pulses with the same energy as the coherent

pulse and centroid displacements such that r?¼ 0 (red), 3 lm

(green), and 5 lm (purple). We note that the black (coherent

pulse) and red (incoherent combination with r?¼ 0) solid

curves are completely overlapped behind the driver region.

The black dotted lines correspond to the theoretical predic-

tions for the on-axis lineout of the accelerating wakefield.

More specifically, following Eq. (20) rewritten for the 2D

Cartesian geometry, we have that the accelerating wakefield

for the incoherent combination is expected to scale as

Ez;incoherentðf; x ¼ 0Þ
Ez;coherentðf; x ¼ 0Þ ¼

w0

w
¼ 1þ 4r2

?
w2

0

 !�1=2

: (22)

The theoretical prediction is in good agreement with the

simulations.

III. INCOHERENT LASER PULSE STACKING

In this section, we consider N identical short laser pulses

with high peak intensity and, owing to the short duration,

moderately low energy, stacked longitudinally in a parabolic

plasma channel as the one described by Eq. (4). All the line-

arly polarized laser pulses have the same amplitude of the

normalized vector potential, a0, wavelength, k0¼ 2p/k0,

pulse length, ‘0, spot size, w0, and independent (random)

phases, uj. We assume kp‘0 � 1 (short pulse compared to

the plasma wavelength), ‘0�2k0, and k0w0� 1 (broad

pulse). As before we take w0¼ r0, so every laser is (linearly)

matched in the channel during propagation. The form of the

laser vector potential for the pulses at s¼ 0 is

a?;jðr; fÞ ¼ a0 exp � r2

w2
0

 !
f

f� f0;j

‘0

� �

� cos½k0ðf� f0;jÞ þ uj�; (23)

for j ¼ 1; :::;N, where z0,j is the longitudinal coordinate of

the centroid for the jth laser, and f(y) is a compact support

function describing the longitudinal envelope. In the follow-

ing, we will assume

f ðyÞ ¼
cos2 pyð Þ; jyj 	

1

2
;

0; jyj > 1

2
:

8>><
>>: (24)

The energy of each pulse, keeping into account the contribu-

tion of the finite length envelope, is

FIG. 2. (a) Snapshots of the longitudinal wakefield maps, Ez(f, x), generated

by an incoherent combination of 48 spectrally separated pulses (including

polarization multiplexing) with identical energies and with r?¼ 0 (over-

lapped centroids, left panel), and r?¼ 5 lm (displaced centroids, right panel).

In both cases, rz¼ 0 (no longitudinal centroids displacement). The laser and

plasma parameters are n0¼ 1018 cm�3, r0¼w0¼ 12 lm, and L0¼ 8 lm. The

remaining incoherent laser parameters, namely k0,j, a0,j, are chosen such

that the conditions expressed by Eq. (15) are satisfied with A0¼ 1 and

k0¼ 0.8lm. The green dashed lines delimit the transverse wakefield extent

for the case with r?¼ 0. (b) On-axis lineout of the longitudinal accelerating

field generated by a coherent pulse with A0¼ 1 (black solid line), and by the

incoherent combination of 48 pulses with the same energy as the coherent

pulse and centroid displacements such that r?¼ 0 (red), 3 lm (green), and

5 lm (purple). The black dotted lines correspond to the theoretical predictions

for the on-axis lineout of the accelerating wakefield.



Uj ’
3

32
pa2

0k2
0w2

0‘0 1þ 4p2

3

1

ðk0‘0Þ2

" #
: (25)

The laser pulses are located, longitudinally, one after the

other (longitudinal stack of pulses) such that the separation

between two adjacent pulses is ‘0 (well separated lasers),

namely jf0;jþ1 � f0;jj ¼ Df ¼ ‘0, in this case the total energy

of the pulses is simply

Utot ¼
XN

j¼1

Uj ’
3

32
pNa2

0k2
0w2

0‘0 1þ 4p2

3

1

ðk0‘0Þ2

" #
: (26)

The concept of driving the wakefield with a long train

of short pulses spaced by the plasma period has been stud-

ied,1 and has been recently re-examined as a technique for

driving plasma accelerators with efficient, low-energy, high-

repetition lasers.2 However, some concern may be raised

about the possibility that the wake remains coherent after

several hundreds (or thousand) of plasma periods.

Furthermore, using pulse trains, the fluctuations in the back-

ground density need to be small in order to avoid changes in

the phase velocity of the wake due to variations of the

plasma wavelength, kp ¼ 2p=kp / 1=
ffiffiffiffiffi
n0
p

, which could

potentially spoil the properties or limit the energy gain of

the accelerated bunch located at some phase (accelerating

and focusing) behind the last laser pulse. In our approach,

all the pulses are located within a plasma period and we use

the combined envelope of the stack of short, sub-resonant

pulses to synthesize the envelope of a single longer, reso-

nant pulse.

The wakefield, /tot, generated behind the train of N
pulses can be compute analytically in the limit a0�1 using,

as before, the quasi-static approximation. We will also make

the assumption of broad plasma channel, k2
pr2

0 � 1. Owing

to linearity of the wakefields and to the fact that the different

pulses are non-overlapping, we have /tot ¼
PN

j¼1 /j and /j,

and the single-pulse contribution to the wakefield satisfies

k�2
p ð@2/j=@f

2Þ ¼ �/j þ a2
?;j=2. The Green function solution

for /j in the region behind the laser pulse where the laser

field vanishes, namely f < f0;j � ‘0=2, is

/j ¼�
3

32
a2

0ðkp‘0Þe�2r2=w2
0

�
sin kpðf� f0;jÞ
� 	

� G
k0‘0

p

� �
cosð2ujÞsin kpðfþ f0;jÞ

� 	

; (27)

where GðxÞ ¼ ð4=pÞ½sinðpxÞ=ð4x� 5x3 þ x5Þ�. We notice

that /j depends on the laser phase uj; however, the function

Gðk0‘0=pÞ goes to zero quickly as L0 increases

(jGj � 1=ðk0‘0Þ5 for k0‘0 large). For instance, already if we

take ‘0�2k0, then G�10�3, and so the dependence of the

wakefield amplitude on the laser phase can be neglected.

Assuming the N lasers are distributed in the interval

�L0=2 	 f 	 L0=2, that is, f0;j ¼ �L0=2þ L0ðj� 1Þ=
ðN � 1Þ, for j ¼ 1; :::;N, then the total wakefield in the

region f < �L0=2� ‘0=2 is

/tot ¼ �
3

32
a2

0ðkp‘0Þ
XN

j¼1

cos kpf0;j

0
@

1
Ae�2r2=w2

0 sin kpf

’ � 3

16
a2

0 sin
kpL0

2

� �
e�2r2=w2

0 sin kpf; (28)

where we assumed N� 1.

We compare the wakefield generated by the stack of

pulses with the one generated by a single (coherent) laser

pulse with amplitude A0, wavenumber k0, spot size w0¼ r0,

and a longitudinal flattop intensity profile of length L0,

namely acðf; rÞ ¼ A0 expð�r2=w2
0Þcosðk0fÞ for jfj < L0=2,

for jfj > L0=2 the amplitude of the vector potential goes to

zero with a ramp characterized by a scale length Lr such that

k0 � Lr � L0 � k�1
p . The exact functional form of the ramp

is not relevant. The energy of the pulse is Uc ’ pA2
0k2

0w2
0L0=4

and the wakefield behind the pulse is /c ’ �ðA2
0=2Þ

sinðkpL0=2Þe�2r2=w2
0 sin kpf. Equating the wakefield amplitude

for the pulse train /tot given by Eq. (28) to the one of a single

pulse, we obtain that the two are equivalent if

a0 ¼
ffiffiffi
8

3

r
A0: (29)

By substituting the value of a0 given by Eq. (29) in the

expression for Utot, Eq. (26), and comparing Utot with the

energy of the single pulse, Uc, we obtain

Utot

Uc
’ 1þ 4p2

3

k2
p

k2
0

N2

ðkpL0Þ2
�1: (30)

We notice that, even though the wakefield generated by

the stack of pulses is equivalent to the one generated by a

single coherent pulse, the total energy of the combination of

pulses is more than the one of the coherent pulse. The loss in

the efficiency of the combination is related to finite pulse

length effects, and is sensitive to the details of the longitudi-

nal pulse envelope. However, for physically relevant param-

eters, the quantity g ¼ ð4p2=3Þðkp=k0Þ2½N2=ðkpL0Þ2� is small.

In fact, for a resonant flattop pulse, kpL0¼p, and the condi-

tion ‘0�2k0 limits the maximum number of pulses to

N�ðk0=kpÞ=4, and so g�0:08. In a 10 GeV LPA stage

(k0/kp� 100), the maximum number of pulses in the train

would be N�25, with an energy per pulse of �1:3 J. The

overall number of pulses in the train can be doubled (and so

the energy of each pulse halved) by using polarization

multiplexing.

A numerical example of wakefield generated by the

incoherent pulse stacking is presented in Fig. 3. In Fig. 3(a),

we show (black dashed line) the normalized laser field enve-

lope for a single (coherent) flat-top laser pulse with A0¼ 1.5,

k0/kp¼ 150, and kpL0¼ p. The red curve is the laser field

generated by stacking longitudinally 37 pulses with

a0 ¼
ffiffiffiffiffiffiffiffi
8=3

p
A0 ’ 2:45; ‘0 ¼ 2k0. The laser phases for the 37

pulses are random. In Fig. 3(b), we show the lineout of the

longitudinal accelerating field, Ez(f)/E0, generated by the

coherent pulse (black line) and by the incoherent stacking of

laser pulses for two different set of values of the laser phases



(dotted red line and blue diamonds). As expected, we have

that the wakefield from incoherent combination equals the

one from the single coherent pulse. The energy of the inco-

herent combination exceeds the energy of the coherent pulse

by �8% in agreement with Eq. (30).

IV. MOSAIC OF INCOHERENT LASER BEAMLETS

As a third example of driving a wakefield with incoher-

ently combined laser pulses, we consider a collection of

short and narrow laser beamlets placed side-by-side, both

longitudinally and transversally, tiling a prescribed volume.

Each pulse has high (relativistic) peak intensity but low

energy owing to the limited spatial extent of the beamlets.

The domain to be tiled (cylinder in 3D or rectangle in 2D) is

given by jfj < L0, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< W0, in 3D, or

jxj < W0, in 2D Cartesian geometry. This scheme can be

seen as the generalization to the transverse dimensions of the

one presented in Sec. II. For simplicity, we will restrict our

analysis to the 2D Cartesian geometry. The generalization to

3D is straightforward. In this scheme, the pulses are initially

organized into a 2D grid of Nz�Nx points; then, at each

location, two laser beamlets with orthogonal polarization can

be accomodated (polarization multiplexing). The total

number of beamlets is then N¼Nz�Nx� 2. All the laser

beamlets have the same amplitude of the normalized vector

potential, a0, wavelength, k0¼ 2p/k0, pulse length, ‘0, and

spot diameter, d0. The longitudinal and transverse coordi-

nates of the centroid of the beamlets are, f0;i ¼ �L0=2

þ ‘0=2þ ‘0ði� 1Þ, for i ¼ 1; :::;Nz, and x
ðkÞ
0;j ¼ �W0 þ d0=2

þ d0ðjþ k=2� 1Þ for j ¼ 1; :::;Nx and k¼ 0, 1, where k is

the polarization index (e.g., k¼ 0 for the in-plane polariza-

tion, k¼ 1 for the out-of-plane polarization). The laser field

for each beamlet is non-zero only over the domain defined

by jf� f0;ij < ‘0=2 and jx� x
ðkÞ
0;j j < d0=2, and so beamlets

with the same polarization do not overlap. The form of the

laser vector potential for the pulses at s¼ 0 is

a
ðkÞ
?;ijðf; xÞ ¼ a0f?

x� x
ðkÞ
0;j

d0

!
fk

f� f0;i

‘0

� �
� cos½k0ðf� f0;iÞ þ ui;j;k�; (31)

where ui;j;k is the laser phase (different for each laser), and

f?(y), fk(y) are compact support functions that vanish for

jxj > 1=2. In the following, we will assume f?¼ fk¼ f, where

f is the one defined in Eq. (24).

The guiding of this incoherent combination of laser

pulses over distances much longer compared to the Rayleigh

length of the single beamlets, namely ZR � pd2
0=k0, can be

achieved by a plasma channel with a constant density,

n(x)¼ n0, up to a distance R�W0 from the axis, and then,

for jxj > R, a steep plasma wall, for instance nðxÞ ¼ n0

þqðjxj � RÞ8, where q is a parameter that sets the steepness

of the wall. The optimal value of both R and q is chosen via

numerical simulations. During propagation, the single beam-

lets diffract but their energy is reflected by the plasma walls.

Because of multiple reflections and interference between

fields of different beamlets, we expect the total electromag-

netic radiation driving the wake to have a complex pattern.

Another consequence of multiple reflections, and of the fact

that each beamlet is characterized by a typical (finite) dif-

fraction angle, is the increase of the effective driver length,

implying a slow decrease of the accelerating field induced by

the loss of resonance of the driver.

In Fig. 4(a), we show, as an example, the evolution of

the rms transverse size of the energy distribution, rx(s), for a

combinations of 208¼ 13� 8� 2 beamlets with a0¼ 1.5,

‘0¼ 4 lm, d0¼ 15 lm, k0¼ 0.8 lm. The background plasma

density is n0 ¼ 0:9 � 1017 cm�3. The beamlets are tiling a 2D

domain with L0¼ 55 lm and 2W0¼ 144 lm. We see that the

laser energy from the combination is well guided over

FIG. 3. (a) Normalized laser field envelope for a single (coherent) flat-top

laser pulse with A0¼ 1.5, k0/kp¼ 150, kpL0¼p (black dashed line). The red

plot is the laser field generated by stacking longitudinally 37 pulses with

a0 ¼
ffiffiffiffiffiffiffiffi
8=3

p
A0 ’ 2:45; ‘0 ¼ 2k0. The laser phases for the 37 pulses are

random. (b) Lineout of the longitudinal accelerating field generated by the

coherent pulse (black line) and by the incoherent stacking of laser pulses for

two different set of values of the laser phases (dotted red line and blue

diamonds).



distances significantly longer than the Rayleigh length of the

beamlets. Figs. 4(b) and 4(c) show snapshots of the laser

energy density at the beginning of the simulation (b), and

after some propagation distance in the plasma (c), where the

laser field exhibits a clear incoherent pattern.

To simplify the analytical description of the system, we

will assume kp‘0 � 1 (short pulse compared to the plasma

wavelength), ‘0�2k0, and w0/‘0� 1. An estimate of the sin-

gle pulse energy is give by

U
ðkÞ
ij ’

ð
df
ð

dx
@a
ðkÞ
?;ij
@f

 !2

’ 9

128
a2

0k2
0d0‘0 1þ 4p2

3

1

ðk0‘0Þ2

" #
: (32)

Since the beamlets are (initially) non-overlapping, the total

energy of the combination is

Utot ¼
XN

j¼1

Uj

’ 9

128
Na2

0k2
0d0‘0 1þ 4p2

3

1

ðk0‘0Þ2

" #

’ 9

32
a2

0k2
0W0L0 1þ 4p2

3

k2
p

k2
0

N2
z

ðkpL0Þ2

" #
: (33)

As shown in the previous sections, in the limit a0�1

(linear wakefield) and by using the quasi-static approxima-

tion, we can obtain an estimate of the wakefield amplitude at

early times during propagation, when the structure of the

total electromagnetic fields of the beamlets is still reasonably

simple. In particular, behind the region occupied by the drive

lasers, the longitudinal accelerating field reads

Ez;totðf;xÞ=E0 ’
3

32
a2

0ðkp‘0Þ
XNz

i¼1

XNx

j¼1

X1

k¼0

f 2
x� x

ðkÞ
0;j

d0

 !

� cosðkpfÞcosðkpf0;iÞþ sinðkpfÞsinðkpf0;iÞ
� 	

:

(34)

In this calculation, we neglected the terms of the wakefield

depending on the laser phases ui;j;k since, as shown in Sec. II,

already for very short pulses, namely ‘0=k0�2, their contri-

bution is negligible. We notice that, in Eq. (34),PNz

i¼0 coskpf0;i’ð2=kp‘0ÞsinðkpL0=2Þ, and that
PNz

i¼0 sinkpf0;i

’ 0. We also notice that the dependence of Ez on x is modu-

lated by the function gðxÞ

PNx

j¼1

P1
k¼0 f 2½ðx� x

ðkÞ
0;j Þ=d0�,

whose average value, which depends on the particular dispo-

sition of the beamlets, the dimensionality (2D Cartesian), and

the particular choice of the transverse envelope shape for the

beamlets. For Eq. (24), the average of g(x) is 3/4. As a conse-

quence, the mean amplitude of Ez far from the plasma walls is

Ez;totðf; jxj � RÞ=E0 ’
9

64
a2

0sin
kpL0

2

� �
cos kpf: (35)

We compare the wakefield generated by the combina-

tion of beamlets with the one generated by a single (coher-

ent) laser pulse with amplitude A0, wavenumber k0. The

pulse has a longitudinal flattop intensity profile of length L0,

and a super-Gaussian transverse intensity profile, namely

FIG. 4. (a) Evolution of the rms transverse size of the energy distribution,

rx(s), for a combinations of 208¼ 13� 8� 2 beamlets with a0¼ 1.5,

‘0¼ 4 lm, d0¼ 15 lm, k0¼ 0.8 lm. The background plasma density is

n0¼ 0.9 � 1017 cm�3. The beamlets are tiling a 2D domain with L0¼ 55 lm,

and 2W0¼ 144 lm. (b) Snapshot of the laser energy density at the beginning

of the simulation, and (c) after some propagation distance in the plasma.
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acðf; xÞ ¼ A0exp½�ðx=W0Þ14�cosðk0fÞ for jfj < L0=2. For

jfj > L0=2, the amplitude of the vector potential goes to zero

with a ramp characterized by a scale length Lr such that

k0 � Lr � L0 � k�1
p . We notice that the intensity profile is

transversally constant for jxj�W0, as is the transverse profile

for the incoherent combination case. The energy of the

coherent pulse is Uc ’ A2
0k2

0W0L0, and the on-axis accelerat-

ing field behind the pulse is Ez;cðf; x ¼ 0Þ=E0

’ A2
0

2
sin

kpL0

2

� �
cos kpf. Equating the field amplitude for the

beamlets, Ez,tot, given by Eq. (35) to the one of a single

pulse, we obtain that the two are equivalent if

a0 ¼
4
ffiffiffi
2
p

3
A0: (36)

By substituting the value of a0 given by Eq. (36) into the

expression for Utot, Eq. (33), and comparing Utot with the

energy of the single pulse, Uc, we obtain

Utot

Uc
’ 1þ 4p2

3

k2
p

k2
0

N2
z

ðkpL0Þ2
�1: (37)

As for the laser pulse stacking example, also in this case, we

expect that, for a given wakefield amplitude, the energy of

the incoherent combination exceeds the energy of the coher-

ent pulse by a few percents.

A numerical example of wakefield generated by the a

mosaic of incoherent beamlets is presented in Fig. 5. The

laser and plasma parameters are the same as in Fig. 4. In

Fig. 5(a), we show a 2D map of the longitudinal wakefield,

Ez(f, x), generated by the incoherent combination. In

Fig. 5(b), we show the on-axis lineout of the accelerating

field for the incoherent combination (red line) and for a

single coherent pulse with A0¼ 0.8 (black dashed line). We

notice that, behind the driver region, the wake from incoher-

ent combination is regular and its amplitude is the same as

the one from a single (coherent) pulse. The total energy of

the combination of pulses exceeds the one of the coherent

pulse by �10%. We notice that this value is slightly higher

than the one given by Eq. (37). This difference can be

ascribed to the details of the definition of the laser pulses in

the simulation (i.e., small differences in the definition of the

intensity profiles between coherent and incoherent case).

The noisy field structure observed in the lineout of the accel-

erating field, due to multiple reflections from walls and inter-

ference of beamlets, does not affect the energy gain of

relativistic particles accelerated in the wakefield. This is

shown in the inset of Fig. 5(b), where we compute the inte-

grated momentum gain, defined as Duzðf; sÞ ’ �ðe=mc2ÞÐ s
0

Ezðf; s0Þds0, for a relativistic particle initially located in

kpf ’ �10 (maximum accelerating field). The black and red

lines in the inset refer, respectively, to the momentum gain

in the coherent and incoherent case. The momentum gain in

the two cases is approximately equal (�2% difference in the

energy gain after 10 mm propagation).

As a final illustration, we will compute the number of

beamlets, in 3D, required to power a 10 GeV LPA stage

(Uc� 30 J, k0� 1 lm, A0� 1, flattop length L0� 50 lm, spot

size W0� 60 lm). By using, for instance, beamlets with

‘0� 3k0� 3 lm (’10 fs), and d0� 10 lm, we obtain Nz

’L0/‘0� 16, and Nx/2¼Ny/2�W0/d0� 6. Taking into

account polarization multiplexing, the total number of beam-

lets is then N� 3600, and the energy of each beamlet would

be �8 mJ.

V. CONCLUSIONS

In this paper, we studied the wakefield generated by the

incoherent combination of multiple laser pulses. We have

shown that multiple, low-energy, incoherently combined

pulses may be employed to efficiently excite plasma

FIG. 5. (a) Map of the longitudinal wakefield, Ez(f, x), generated by the

incoherent combination of 208 beamlets [same parameters as in Fig. 4]. (b)

On-axis lineout of the accelerating field for the incoherent combination (red

line) and for a single coherent pulse with A0¼ 0.8 (black dashed line). This

inset shows the integrated momentum gain, Duzðf; sÞ ’ �ðe=mc2ÞÐ s
0

Ezðf; s0Þds0, for a relativistic particle initially located in kpf ’ �10 (maxi-

mum accelerating field). The black and red lines refer, respectively, to the

momentum gain in the coherent and incoherent cases.



wakefields for LPA applications. This is the case since the

wakefield is excited in a plasma by the nonlinear pondero-

motive force, Fp, which in the mildly relativistic regime

(a2< 1) scales as Fp� a2, along with the fact that the plasma

responds on the time scale �x�1
p . Effective wake generation

requires that there is a sufficiently large amount of laser

energy within a sufficiently small volume �k3
p, however,

wake excitation is largely insensitive to small scale fluctua-

tions (time scales <x�1
p ) in the laser energy density within

this volume. In effect, the plasma response averages out the

small scale structures in the laser driver. Hence, a highly

incoherent driver, such as a collection of incoherently com-

bined laser pulses, can be used to excite a wakefield, as long

as the resulting incoherent structures exist on a short time

scale (<x�1
p ), and the resulting time averaged structure has a

form appropriate for wake generation (e.g., a time-averaged

structure that is localized in space and time to a volume

�k3
p).

To illustrate the physics, we considered three different

combination schemes, namely, spectral combining, pulse

stacking, and a mosaic of beamlets. The aim of these

schemes is to deliver in a suitable spatial volume a certain

amount of electromagnetic energy obtained from multiple,

low-energy laser beams. For each incoherent combination

scheme examined, we characterized the wakefield amplitude

and compared it to that generated by a single (coherent) laser

pulse with the same length and width. In particular, we deter-

mined under which conditions the wakefield generated by

the incoherent combination is equivalent to that generated by

the single coherent pulse and we compared the total energy

for each case. More specifically, we find that, for the wave-

length combination scheme, the wakefield amplitude excited

by the combination can be equal to that generated by a single

(coherent) pulse, and the energy of the combination equals

the energy of the single pulse, i.e., the incoherent combina-

tion scheme is as efficient as the coherent one in generating

the wakefield. For the cases of pulse stacking and the mosaic

of beamlets, we find that, even though the wakefield ampli-

tude of the combination equals the one of a single pulse, the

total energy of the combination exceeds the one of a single

pulse. However, the loss in the efficiency of wake excitation

is generally limited to a few percent.

For each combination scheme, we discussed the main lim-

itations. These limitations include dispersive lengthening of the

collection of pulses, limitations imposed by geometry, and lim-

itations due to laser technology. For example, the maximum

number of pulses that can be accommodated in the spectral

combining scheme depends on the maximum bandwidth, the

available frequencies, and the plasma wavelength for a given

density. The three combination schemes discussed in this paper

serve as illustrative examples and should not be considered as

an optimized configuration. One can readily envision other

possible schemes for the incoherent combination of laser

pulses. For instance, some features of the approaches discussed

in this paper can be used in conjunction, e.g., the wavelength

combination approach can be used together with the pulse train

scheme or with the mosaic of beamlets. This would allow

increasing the overall number of beams to use in the combina-

tion and so further reduce the energy of each pulse.

Virtually all applications of LPAs would benefit greatly

from an increase in laser repetition rate and average power.

These applications range from drivers for advanced light

sources (e.g., short-wavelength free-electron lasers) to large-

scale colliders for high-energy physics. As an example, the

laser requirements for a LPA-based collider are extremely

challenging, requiring high efficiency lasers with repetition

rates on the order of ten kHz, and average powers on the

order of hundreds of kW. Present high power, short pulse

laser systems based on Ti:sapphire technology are limited to

an average power on the order of hundreds of watts. One

approach to the next generation of laser drivers for LPAs

that is widely being researched is the coherent combination

of a large number of fiber lasers. Coherent combination of

lasers entails several technical challenges including control

of the laser phase, spatial combination, and precise pulse

timing and synchronization (to within a fraction of a laser

wavelength). Our study, however, has shown that coherent

combination is not required for an LPA. Since no control

over the relative laser phases is imposed, we expect that fun-

damental requirements to achieve incoherent combination

are more relaxed compared to coherent combination, thereby

enabling a technologically simpler path for design of high-

peak power, high-average power, high-repetition rate LPAs,

and associated applications.
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